Chapter 5: Monte Carlo Methods

(0 Monte Carlo methods learn from complete sample returns
= Only defined for episodic tasks

(0 Monte Carlo methods learn directly from experience
= On-line: No model necessary and still attains optimality

s Simulated: No need for a full model
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Monte Carlo Policy Evaluation

O Goal: learn V*(s)
O Given: some number of episodes under & which contain s

(O Idea: Average returns observed after visits to s

O Every-Visit MC: average returns for every time s is visited
in an episode

O First-visit MC: average returns only for first time s is
visited in an episode

(3 Both converge asymptotically
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First-visit Monte Carlo policy evaluation

Initialize:
7« policy to be evaluated
V'« an arbitrary state-value function
Returns(s) «— an empty list, for all s € §

Repeat forever:
(a) Generate an episode using 7
(b) For each state s appearing in the episode:
IR« return following the first oceurrence of s
Append R to Returns(s)
V(s) « average(Returns(s))
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Blackjack example

(O Object: Have your card sum be greater than the dealers
without exceeding 21.

3 States (200 of them):
= current sum (12-21)
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? -
O Reward: +1 for winning, 0 for a draw, —1 for losing

O Actions: stick (stop receiving cards), hit (receive another
card)

O Policy: Stick if my sum is 20 or 21, else hit
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Blackjack value functions

After 10,000 episcdes After 500,000 episodes

Backup diagram for Monte Carlo

(1 Entire episode included

(3 Only one choice at each state
(unlike DP)

0 MC does not bootstrap

O Time required to estimate one
state does not depend on the
total number of states .

terminal state

The Power of Monte Carlo Two Approaches
e.g., Elastic Membrane (Dirichlet Problem)
Relaxation Kakutani’s algorithm, 1945

How do we compute the shape of the membrane or bubble?
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Monte Carlo Estimation of Action Values (Q)

(3 Monte Carlo is most useful when a model is not available
= We want to learn Q"

(0 Q%(s,a) - average return starting from state s and action a
following 7

(O Also converges asymptotically if every state-action pair is
visited

O Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

R. S. Sutton and A. G. Barto: R Leamning: An i 9

Monte Carlo Control

evaluation

m
n Q
TT—>greedy(Q

improvement

0 MC policy iteration: Policy evaluation using MC methods
followed by policy improvement

(O Policy improvement step: greedify with respect to value
(or action-value) function
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Convergence of MC Control

(0 Greedified policy meets conditions for policy improvement:
0" (5,7,,,(5)) = Q™ (s, arg max 0™ (s, @))

= max Q™ (s,a)
a

= 0" (5,7, (5))
= V" (s)
(0 And thus must be = 7, by the policy improvement theorem

(0 This assumes exploring starts and infinite number of episodes
for MC policy evaluation

(0 To solve the latter:
= update only to a given level of performance

= alternate between evaluation and improvement per episode
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Monte Carlo Exploring Starts

Initialize, for all s € §, a € A(s):
(J(s.a) «— arbitrary
7(s) « arbitrary
Returns(s, a) «— empty list

Fixed point is optimal
policy 7

Proof is open question

Repeat forever:
(a) Generate an episode using exploring starts and 7w
(b) For each pair s, a appearing in the episode:
IR «— return following the first occurrence of s, a
Append R to Relurns(s,a)
(s, a) — average( Returns(s,a))
(c) For each s in the episode:
m(s) «— arg max, (s, a)
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Blackjack example continued

O Exploring starts
(1 Initial policy as described before

On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
(0 How do we get rid of exploring starts?

T = Need soft policies: n(s,a) > 0 for all s and a
STk Jao = e.g. e-soft policy:
Usable [
ace : e e
HIT [y l-g+—
8 ()| |A(s)
" non-max greedy
20
No STICK $E
usable o EE 3 Similar to GPI: move policy rowards greedy policy (i.e. &-
B soft)
RES&&G:"B.Q'? ]
Dealer showing (3 Converges to best e-soft policy
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On-policy MC Control Off-policy Monte Carlo control
Initialize, for all s € S, a € A(s): (0 Behavior policy generates behavior in environment
(s, a) — arbitrary A . . L . .
. ' . Estimation policy is policy being learned about
Returns(s, a) « empty list On policy 1S policy being fearne 0
7+ an arbitrary s-soft policy (0 Average returns from behavior policy by probability their
probabilities in the estimation policy
Repeat forever:
(a) Generate an episode using m
(b) For each pair s,a appearing in the episode:
R« return following the first occurrence of s, a
Append R to Returns(s,a)
(s, 1) — average( Returns(s,a))
(¢) For each s in the episode:
a” — arg max, Q(s, a)
For all a € A(s):
ro oy l—=s+ce/|A(s)] ifa=a"
Tis,a) . =/ A(s)] ita#a*
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Learning about s while following ;7'

Suppose we have n, returns, R;(s), from state s, each with probability p;(s)
of being generated by 7 and probability pi(s) of being generated by #'. Then
we can estimate
v e R ()

=1 pifs) "

s Pils)
g, B

V(s) ~ :
)

which depends on the environmental probabilities p;(s) and pj(s). However,

Ti(s)-1
. - a
pilse) = T #wlswan)Ps,
k=t
and
Ti(s)—1 { VP Ti(s)~1 Y
pils)  ILSy  wlsean)Pol, o TET wlsk, ax)

Tils)-1_,
T

Pi(se) Lo, 7' (Sk, ae)Pafs, it ™ sk ax)

Thus the weight needed, p;(s)/pi(s), depends only on the two policies and not
=] ? £l 1 ¥ o
at all on the environmental dynamics.

Off-policy MC control

Initialize, for all s € 8, a € A(s):
Q(s,a) — arbitrary
N(s,a) 0 ; Numerator and
Dis,a)—0 : Denominator of Q(s,a)
7« an arbitrary deterministic policy

Repeat forever:

S0, g, Ty, 51,81, 72, ..., ST, a7 1,77, 57

(b) 7 — latest time at which ar # w(s;)

(c) For each pair s, a appearing in the episode after 7:
t «— the time of first oceurrence (after 7) of s.a
w5 e
N(s,a) — N(s,a)+wh,

D(s,a) «+ D(s,a) +w
Qs.a) — e

(d) For each s £ §:

w(s) « arg max, Q(s, a)

(a) Select a policy 7" and use it to generate an episode:
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Incremental Implementation Racetrack Exercise
1 MC can be implemented incrementally O States: grid squares, velocity O Actions: +1, -1, 0 to velocity
horizontal and vertical i
= saves memory 0 0 < Velocity <5
ake h iohted £ h O Rewards: -1 on track, -5 off [ Stochastic: 50% of the time it
ompute the weighted average of each return track moves | extra square up or right
Finish
L Wn+1 line
WkRk an+1 = I/n + [Rn+1 - an] [ mgsr‘
V _ ~ n+l I
" = VVn+1 = VVn + Wn+l -
2
~ VO = I/VO =0
non-incremental incremental equivalent

d

H

[mI

Starting line Starting line
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Summary

(0 MC has several advantages over DP:
= Can learn directly from interaction with environment
= No need for full models
= No need to learn about ALL states
= Less harm by Markovian violations (later in book)

(0 MC methods provide an alternate policy evaluation
process

(O One issue to watch for: maintaining sufficient exploration
= exploring starts, soft policies
(3 No bootstrapping (as opposed to DP)
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